Unit 1: Trigonometry

Table of Contents

Polar Representation of Complex Numbers

A complex number z = x + iy can be represented in the Cartesian plane (Argand diagram) by the point (x, y).

Modulus and Argument

We can also represent this point using polar coordinates (r, θ).

Polar Form

From the diagram, we can see that `x = r cos(θ)` and `y = r sin(θ)`. Substituting this into `z = x + iy` gives the polar form:

z = r(cos θ + i sin θ)

Euler's Form

Using Euler's formula, `eⁱᶿ = cos θ + i sin θ`, we get the exponential (or Euler's) form:

z = r eⁱᶿ

De Moivre's Theorem for Rational Indices

Statement (for integer index n)

For any real number θ and any integer n: (cos θ + i sin θ)ⁿ = cos(nθ) + i sin(nθ)

Extension to Rational Indices (p/q)

The theorem also holds for rational indices. If `n = p/q` (where p, q are integers, q ≠ 0), then `(cos θ + i sin θ)ᵖ/q` is one of the values of `cos(pθ/q) + i sin(pθ/q)`.

More precisely, to find all q roots, we must use the general form of the argument:

θ = θ + 2kπ (where k is any integer)

So, `(cos θ + i sin θ)¹/q` has `q` distinct values, found by:

[cos(θ + 2kπ) + i sin(θ + 2kπ)]¹/q = cos((θ + 2kπ)/q) + i sin((θ + 2kπ)/q)
for k = 0, 1, 2, ..., q-1

n-th Roots of Unity

This is a direct application of De Moivre's theorem to solve the equation zⁿ = 1.

Solving zⁿ = 1

  1. Write 1 in its polar form: `1 = 1 + i(0)`
    Modulus `r = 1`. Argument `θ = 0`.
  2. Write 1 in its general polar form:
    `1 = cos(0 + 2kπ) + i sin(0 + 2kπ)`
  3. Solve for z: `z = (1)¹/n` z = [cos(2kπ) + i sin(2kπ)]¹/n
  4. Apply De Moivre's Theorem: z = cos(2kπ/n) + i sin(2kπ/n)
  5. Find the `n` distinct roots by using `k = 0, 1, 2, ..., n-1`.

The Roots

The n-th roots of unity are: 1, eⁱ(²π/n), eⁱ(⁴π/n), ..., eⁱ(²(n-1)π/n)

If we let `α = eⁱ(²π/n)`, the roots are `1, α, α², ..., αⁿ⁻¹`.

Geometric Interpretation

The n-th roots of unity are the vertices of a regular n-sided polygon inscribed in the unit circle `|z| = 1` in the Argand plane, with one vertex at the point (1, 0).

Expansions of sin(nθ), cos(nθ), tan(nθ)

We can use De Moivre's Theorem and the Binomial Theorem to expand `cos(nθ)` and `sin(nθ)` in terms of powers of `cos θ` and `sin θ`.

Method

  1. Start with De Moivre's Theorem:
    `cos(nθ) + i sin(nθ) = (cos θ + i sin θ)ⁿ`
  2. Expand the right side using the Binomial Theorem:
    `(cos θ)ⁿ + nC₁(cos θ)ⁿ⁻¹(i sin θ)¹ + nC₂(cos θ)ⁿ⁻²(i sin θ)² + ...`
  3. Simplify the powers of `i` (remember `i² = -1`, `i³ = -i`, `i⁴ = 1`, etc.).
    `= (cosⁿθ - nC₂cosⁿ⁻²θ sin²θ + nC₄cosⁿ⁻⁴θ sin⁴θ - ...) + i (nC₁cosⁿ⁻¹θ sinθ - nC₃cosⁿ⁻³θ sin³θ + ...)`
  4. Equate the Real and Imaginary parts:
    Real Part: cos(nθ) = cosⁿθ - nC₂cosⁿ⁻²θ sin²θ + nC₄cosⁿ⁻⁴θ sin⁴θ - ...
    Imaginary Part: sin(nθ) = nC₁cosⁿ⁻¹θ sinθ - nC₃cosⁿ⁻³θ sin³θ + nC₅cosⁿ⁻⁵θ sin⁵θ - ...
  5. For tan(nθ):
    Use `tan(nθ) = sin(nθ) / cos(nθ)`. Divide the expansions. A common trick is to divide the numerator and denominator by `cosⁿθ` to get an expansion in terms of `tan θ`.

Expansions of sinⁿ(θ) and cosⁿ(θ)

This is the reverse problem: expressing powers of `sin θ` or `cos θ` in terms of sines or cosines of multiples of θ (e.g., `cos 2θ`, `sin 3θ`).

Method (Euler's Identities)

  1. Let `z = cos θ + i sin θ`.
  2. From this, we know: z⁻¹ = cos(-θ) + i sin(-θ) = cos θ - i sin θ
    z + z⁻¹ = 2 cos θ
    z - z⁻¹ = 2i sin θ

    And for multiples of θ:

    zⁿ = cos(nθ) + i sin(nθ)
    z⁻ⁿ = cos(nθ) - i sin(nθ)
    zⁿ + z⁻ⁿ = 2 cos(nθ)
    zⁿ - z⁻ⁿ = 2i sin(nθ)
  3. Use these to write the power (e.g., `cosⁿθ`) in terms of `z`.
    Example: `cosⁿθ = [(z + z⁻¹)/2]ⁿ`
  4. Expand the right side using the Binomial Theorem.
  5. Group the terms in pairs: `(zⁿ + z⁻ⁿ)`, `(zⁿ⁻² + z⁻(n-²))`, etc.
  6. Substitute back: `zⁿ + z⁻ⁿ = 2 cos(nθ)`, etc.

Case: cosⁿ(θ) (n is even)

The expansion will be of the form: `A cos(nθ) + B cos((n-2)θ) + ... + K` (all cosine terms).

Case: cosⁿ(θ) (n is odd)

The expansion will be of the form: `A cos(nθ) + B cos((n-2)θ) + ... + K cos(θ)` (all cosine terms).

Case: sinⁿ(θ) (n is even)

The expansion will be of the form: `A cos(nθ) + B cos((n-2)θ) + ... + K` (all cosine terms, and signs will alternate).

Case: sinⁿ(θ) (n is odd)

The expansion will be of the form: `A sin(nθ) + B sin((n-2)θ) + ... + K sin(θ)` (all sine terms, and signs will alternate).

Exam Tip: